Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Triglyceride-rich lipoprotein binding and uptake by heparan sulfate proteoglycan receptors in a CRISPR/Cas9 library of Hep3B mutants

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639542/
No data is associated with this publication.
Abstract

Binding and uptake of triglyceride-rich lipoproteins (TRLs) in mice depend on heparan sulfate and the hepatic proteoglycan, syndecan-1 (SDC1). Alteration of glucosamine N-sulfation by deletion of glucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) and 2-O-sulfation of uronic acids by deletion of uronyl 2-O-sulfotransferase (Hs2st) led to diminished lipoprotein metabolism, whereas inactivation of glucosaminyl 6-O-sulfotransferase 1 (Hs6st1), which encodes one of the three 6-O-sulfotransferases, had little effect on lipoprotein binding. However, other studies have suggested that 6-O-sulfation may be important for TRL binding and uptake. In order to explain these discrepant findings, we used CRISPR/Cas9 gene editing to create a library of mutants in the human hepatoma cell line, Hep3B. Inactivation of EXT1 encoding the heparan sulfate copolymerase, NDST1 and HS2ST dramatically reduced binding of TRLs. Inactivation of HS6ST1 had no effect, but deletion of HS6ST2 reduced TRL binding. Compounding mutations in HS6ST1 and HS6ST2 did not exacerbate this effect indicating that HS6ST2 is the dominant 6-O-sulfotransferase and that binding of TRLs indeed depends on 6-O-sulfation of glucosamine residues. Uptake studies showed that TRL internalization was also affected in 6-O-sulfation deficient cells. Interestingly, genetic deletion of SDC1 only marginally impacted binding of TRLs but reduced TRL uptake to the same extent as treating the cells with heparin lyases. These findings confirm that SDC1 is the dominant endocytic proteoglycan receptor for TRLs in human Hep3B cells and that binding and uptake of TRLs depend on SDC1 and N- and 2-O-sulfation as well as 6-O-sulfation of heparan sulfate chains catalyzed by HS6ST2.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item