Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Selective flexibility: Breaking the rigidity of datapath merging

Published Web Location

http://www1.cs.ucr.edu/faculty/philip/papers/conferences/date12/date12-datapath.pdf
No data is associated with this publication.
Abstract

Hardware specialization is often the key to efficiency for programmable embedded systems, but comes at the expense of flexibility. This paper combines flexibility and efficiency in the design and synthesis of domain-specific datapaths. We merge all individual paths from the Data Flow Graphs (DFGs) of the target applications, leading to a minimal set of required resources; this set is organized into a column of physical operators and cloned, thus generating a domain-specific rectangular lattice. A bus-based FPGA-style interconnection network is then generated and dimensioned to meet the needs of the applications. Our results demonstrate that the lattice has good flexibility: DFGs that were not used as part of the datapath creation phase can be mapped onto it with high probability. Compared to an ASIC design of a single DFG, the speed of our domain-specific coarse-grained reconfigurable datapath is degraded by a factor up to 2x, compared to 3-4x for an FPGA; similarly, our lattice is up to 10x larger than an ASIC, compared to 20-40x for an FPGA. We estimate that our array is up to 6x larger than an ASIC accelerator, which is synthesized using datapath merging and has limited or null generality. © 2012 EDAA.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item