Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Proton Block and Voltage Gating Are Potassium-dependent in the Cardiac Leak Channel Kcnk3*

Abstract

Potassium leak conductances were recently revealed to exist as independent molecular entities. Here, the genomic structure, cardiac localization, and biophysical properties of a murine example are considered. Kcnk3 subunits have two pore-forming P domains and unique functional attributes. At steady state, Kcnk3 channels behave like open, potassium-selective, transmembrane holes that are inhibited by physiological levels of proton. With voltage steps, Kcnk3 channels open and close in two phases, one appears to be immediate and one is time-dependent (tau = approximately 5 ms). Both proton block and gating are potassium-sensitive; this produces an anomalous increase in outward flux as external potassium levels rise because of decreased proton block. Single Kcnk3 channels open across the physiological voltage range; hence they are "leak" conductances; however, they open only briefly and rarely even after exposure to agents that activate other potassium channels.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View