Skip to main content
eScholarship
Open Access Publications from the University of California

Lattice and electronic structure of ScN observed by angle-resolved photoemission spectroscopy measurements

Published Web Location

https://doi.org/10.1063/5.0119628
Abstract

Scandium nitride (ScN) has recently attracted much attention for its potential applications in thermoelectric energy conversion, as a semiconductor in epitaxial metal/semiconductor superlattices, as a substrate for GaN growth, and alloying it with AlN for 5G technology. This study was undertaken to better understand its stoichiometry and electronic structure. ScN (100) single crystals 2 mm thick were grown on a single crystal tungsten (100) substrate by a physical vapor transport method over a temperature range of 1900-2000 °C and a pressure of 20 Torr. The core level spectra of Sc 2p3/2,1/2 and N 1s were obtained by x-ray photoelectron spectroscopy (XPS). The XPS core levels were shifted by 1.1 eV toward higher values as the [Sc]:[N] ratio varied from 1.4 at 1900 °C to ∼1.0 at 2000 °C due to the higher binding energies in stoichiometric ScN. Angle-resolved photoemission spectroscopy measurements confirmed that ScN has an indirect bandgap of ∼1.2 eV.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View