Skip to main content
eScholarship
Open Access Publications from the University of California

Synthesis, antibiotic structure–activity relationships, and cellulose dissolution studies of new room-temperature ionic liquids derived from lignin

Abstract

Background

Ionic liquids (ILs) are promising pretreatment solvents for lignocellulosic biomass, but are largely prepared from petroleum precursors. Benzaldehydes from depolymerized lignin, such as vanillin, syringaldehyde, and 4-methoxy benzaldehyde, represent renewable feedstocks for the synthesis of ionic liquids. We herein report syntheses of novel lignin-derived ionic liquids, with extended N-alkyl chains, and examine their melting points, cellulose dissolution capacities, and toxicity profiles against Daphnia magna and E. coli strain 1A1. The latter organism has been engineered to produce isoprenol, a drop-in biofuel and precursor for commodity chemicals.

Results

The new N,N-diethyl and N,N-dipropyl methyl benzylammonium ILs were liquids at room temperature, showing 75-100 °C decreased melting points as compared to their N,N,N-trimethyl benzylammonium analog. Extension of N-alkyl chains also increased antibacterial activity threefold, while ionic liquids prepared from vanillin showed 2- to 4-fold lower toxicity as compared to those prepared from syringaldehyde and 4-methoxybenzaldehyde. The trend of antibacterial activity for anions of lignin-derived ILs was found to be methanesulfonate < acetate < hydroxide. Microcrystalline cellulose dissolution, from 2 to 4 wt% after 20 min at 100 °C, was observed in all new ILs using light microscopy and IR spectroscopy.

Conclusions

Ionic liquids prepared from H-, S- and G-lignin oxidation products provided differential cytotoxic activity against E. coli and D. magna, suggesting these compounds could be tailored for application specificity within a biorefinery.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View