Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Fluorescent toxins as ion channel activity sensors

Abstract

Voltage gated ion channels (VGICs) shape the electrical character of cells by undergoing structural changes in response to membrane depolarization. High-resolution techniques have provided a wealth of data on individual VGIC structures, but the conformational changes of endogenous channels in live cell membranes have remained unexplored. Here, we describe methods for imaging structural changes of voltage-gated K+ channels in living cells, using peptidyl toxins labeled with fluorophores that report specific protein conformations. These Endogenous Voltage-sensor Activity Probes (EVAPs) enable study of both VGIC allostery and function in the context of endogenous live-cell membranes under different physiological states. In this chapter, we describe methods for the synthesis, imaging, and analysis of dynamic EVAPs, which can report K+ channel activity in complex tissue preparations via 2-photon excitation microscopy, and environment-sensitive EVAPs, which report voltage-dependent conformational changes at the VGIC-toxin interface. The methods here present the utility of current EVAPs and lay the groundwork for the development of other probes that act by similar mechanisms. EVAPs can be correlated with electrophysiology, offering insight into the molecular details of endogenous channel function and allostery in live cells. This enables investigation of conformational changes of channels in their native, functional states, putting structures and models into a context of live-cell membranes. The expansive array of state-dependent ligands and optical probes should enable probes more generally for investigating the molecular motions of endogenous proteins.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View