Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in arabidopsis

Abstract

Ribosome biogenesis, which takes place mainly in the nucleolus, involves coordinated expression of pre-ribosomal RNAs (pre-rRNAs) and ribosomal proteins, pre-rRNA processing, and subunit assembly with the aid of numerous assembly factors. Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing; however, the underlying molecular mechanism remains unknown. Here, we report that AtPRMT3 interacts with Ribosomal Protein S2 (RPS2), facilitating processing of the 90S/Small Subunit (SSU) processome and repressing nucleolar stress. We isolated an intragenic suppressor of atprmt3-2, which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3, and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3, showing pleiotropic developmental defects and aberrant pre-rRNA processing. RPS2B binds directly to pre-rRNAs in the nucleus, and such binding is enhanced in atprmt3-2. Consistently, multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2, which accounts for early pre-rRNA processing defects and results in nucleolar stress. Collectively, our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View